Flow stress by inverse analysis with
dynamic recovery and recrystallization
model of duplex stainless steel
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Introduction

Material flow stress is one of the most important parameters in hot working. The hot working behavior is
constitutively modeled as a function of temperature, strain and strain rate. However, the determination of
flow stress of the duplex stainless steel seems more complex because the two principal phases of the
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austenite and the ferrite, coexist and behave dissimilarly during the hot working by undergoing e W N
heterogeneous metallurgical and microstructural kinetics behaviors. The heterogeneity results in a complex (E)" ReCOV?W g?"x b”dge[;” |
determination of flow stresses from the work hardening rate with the softening interacted in each two- é’;\'gﬁgch St'gi?]?ep;re’ uplex

phase. With the aim of obtaining more accurate flow behavior of duplex stainless steel, the duplex flow
model was proposed. The inverse analysis by the proposed duplex model was performed coupled with
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thermomechanical FEM, as the countermeasure of uncontrollable experimental influences by the internal- " Chemical tanker
external heat transfer, the friction and the heat generation from the deformation of a specimen under hot % @ ArcelorMittal
working.

Multi-Phases Model Development
1) Stress-Strain Partitioning 2) Heterogeneous Mechanism 3) Constitutive Duplex Model
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Microstructural Observation Invers Analysis and
The rate of work hardening with softening varies from the conditions Thermomechanical CAE
during hot working. Moreover, the ratio of work hardening with softening Inverse analysis coupled with thermomechanical CAE provides
IS affectec_al by chemical Composmo_n, and mlcr_ostructure§ with -dlﬁ_erent the isothermal and homogeneous flow descriptions.
metallurgical phases of the austenite and ferrite. EBSD Iinvestigation was
performed to explorer microstructure evolutions and softening
mechanism using two specimens in terms of dynamic recovery and Determination of friction coefficient
dynamic recrystallization. and initial stress G = G (C,€, &,T)
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