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Tensile Shear Test  Optimal: W1.6-S1.7-T450-H22 

Joining Mechanisms:  
Chemical bonding  (800-nm-thick continuous interdiffusion layer at the interface, machoanchoring effect of the mechanical confinement and microanchoring effect. 
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Peel Test  Optimal: W1.6-S1.7-T400-H22  with largest failure energy 

Fuel consumption is linearly proportional to 

the weight of transportation product.   

Combining lightweight and non-lightweight materials 

to develop lightweight hybrid structure is future trend. 

Cross section 

(a) Macroanchoring

1 μm

A6061P-T6

SUS304

1 μm

A6061P-T6

SUS304

(b) Microanchoring

Aluminum extruded sections

Aluminum sheet-sections

Aluminum casting-sections

Steel sheet-sections

Compression  machine 

assisted by induction heating  

Experimental parameters 

and used die  with groove 
Parametric 

optimization strategy 

supplied plastic strain    X, Y

supplied thermal energy Z
Determinants

3 m

SUS304

A6061P-T6

W1.6-S1.7-T400-H22 

(neck region)(a) (b)

(c)

SUS304A6061P-T6

Macroanchoring

1 μm

A6061P-T6

SUS304

1 μm

A6061P-T6

SUS304

Microanchoring

W1.6-S1.7-T400-H22 

(neck region)

~800 nm 

interdiffusion layer

        Aluminum alloy/steel hybrid components are widely used in different industrial areas. 

However, further reducing component thickness for lightweight hybrid products has made 

the dissimilar joining of Al alloy and steel thin sheets (less than 1 mm in thickness) a greater 

challenge. In this research, an alternative dissimilar joining process by thermally assisted 

plastic deformation is proposed for thin metallic sheets. The effects of various parameters 

on the joining performance were investigated. After exposure to an elevated temperature of 

450 ºC for 22 s, an optimized joint type was achieved by local plastic deformation using a 

simple punch-die pair. This joint type exhibited an average joint efficiency factor of 85.2% 

and average absorption energy of 1.69 kN∙mm in tensile shear tests, as well as satisfactory 

joining performance in peel tests. Such high-quality dissimilar joints were realized by simply 

operated die forging in air, without any yielding gas, flux brazing or surface treatment. 

Source: Bandivadekar et al. 

2008. Report No. LFEE 2008-

05 RP, MIT.  

Source: European Aluminium 

Association, 2013.     

        http://www.alueurope.eu. 

The W1.6-S1.7-T450 joint shows 

highest average ultimate tensile 

shear load in tensile shear test. The 

joint efficiency factor is 85.2%. 
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